NAME
U1:L1 Arithmetic sequences
A sequence is set of things in order.
3, 5, 7,9
$1^{\text {st }}$ term (aka: element) \hat{L}^{x} ellipses (continues $\left.\begin{array}{c}\text { forever }\end{array}\right)$

"t subscript 1 "o r"t sub 1 ". 1

Sequences can be either:

FINITE	Has a finite amount of terms	$1,2,3,4,5$ $10,20,30 \ldots .100$
INFINITEHas an infinite number of terms...	$5,10,15 \ldots$.	

In an arturnetic sequence the difference between one term
and the next is constant.
In other words, we just add the same value each time ... infinitely.

$$
1,4,7,10,13,16 \ldots
$$

$$
d=+3
$$

The Com mon difference (dy) between terms can be represented as...

$$
d=t_{n}-t_{n-1}
$$

General Terms
Consider the following sequence...

$\underset{\text { SERM }}{\text { SEOUNCE }}$	$\frac{t_{1}}{2}$	${ }_{5}^{t_{2}}$		${ }_{11}$
SEQuence What is the common differenere?				
Sxpression	2	$2+3$	$2+3+3$	$2+3+3+$
* $\begin{gathered}\text { Seneral } \\ \text { Seuuence }\end{gathered}$	t_{1}	$t_{1}+d$	$t_{1}+d+d$	$t_{1}+d+d+d$
Simplity	t_{1}	$t_{1}+d$	titad	$t_{1}+3 d$

The general rithmetic sequence is then...

TERQunce	t_{1}	$t_{1}+d$	$t_{1}+2 d$	$t_{1}+3 d$

Looking at the patterns in this relationship we can find the General term of any arithmetic sequence...

With this general sequence, we can find any of the above information by solving algebraically.

$$
t_{100}=3+(99) 5 \cup
$$

$$
\begin{aligned}
& 5 \mathrm{~cm} \text { per year. Suppose a child was } 70 \mathrm{~cm} \text { tall at age } 3 \text {. }
\end{aligned}
$$

Write the general term you could use

$$
\begin{gathered}
t_{n}=t_{1}+(n-1) d \\
t_{n}=70+(n-1) 5 \\
\end{gathered}
$$

How tall is the child expected to be a a age 10 ?

$$
\begin{aligned}
& t_{8}=70+(8-1) 5 \\
& \left.t_{8}=70+(7)\right) 5 \\
& t_{8}=70+35
\end{aligned} \rightarrow t_{8}=105 \mathrm{~cm}
$$

$$
\begin{aligned}
& \text { EXAMPLES: } \\
& \text { Write the general term for the following sequence: } \\
& t_{n}=t+(n-1) \theta^{3,8,13,18,23,28,33,38, \ldots} \\
& t_{n}-t_{n-1}=q \\
& 28-23=d \\
& * t_{n}=3+(n-1) 5 \\
& 5=d \\
& \rightarrow \text { Find iteform: } \\
& t_{n}=3+(n-1) 5 \\
& t_{9}=3+(9-1) 5 \\
& \begin{array}{l}
t_{q}=3+(8) 5 \\
t_{q}=431
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
t_{100}=3+(100-1) 5 \\
t_{100}=3+(99) 5
\end{array} \quad t_{100}=498
\end{aligned}
$$

$$
d=t_{n}-t_{n-1}
$$

$$
t_{1}=4
$$

$$
t_{10}=67
$$

$$
t_{n}=t_{1}+(n-1) d
$$

$$
t_{10}=4+(10-1) d
$$

$$
\begin{aligned}
& 67 \pm 4+9 d \\
& \hline \frac{43}{6}=\frac{9 d}{9} \\
& \hline 7=0
\end{aligned}
$$

$\begin{array}{ll}\text { What is the thirty-second term of the arithmetic sequence } \begin{array}{l}-12,-7,-2,3, \ldots \\ t_{32}\end{array} & \begin{array}{l}t_{1}=-12 \\ =t_{1}+(n-1) d\end{array} \\ d=+5\end{array}$

$$
\begin{aligned}
& t_{n}=t_{1}+(n-1)^{t_{32}} \\
& t_{32}=-12+(32-1) 5 \\
& t_{32}=-12+(31) 5 \\
& t_{32}=-12+155 \\
& t_{32}=143
\end{aligned}
$$

$$
d=+5
$$

Joe Bob has a job at Dancyt's. He has been tasked with creating a pyramid display of cereal boxes. Thetop six rows of his display are as shown below. The number of boxes in the rows make an arithmetic sequence. There are 16 boxes in the third row from the bottom and boxes n the eighth row from the bottom.

- How many boxes are in the bottom row?
$20!$
$t_{n}=t_{1}+(n-1) d$ $\begin{aligned} & t_{n}=2+(10-1)^{2} 2 \\ & t_{n}=2+2(2){ }^{2}=2+18\end{aligned} t_{10}=20$
- Determine the general term for the sequence

- What is the number of rows of boxes in his display?

from image + pattern

A plumber charges $\$ 50$ per visit, plus $\$ 35$ an hour (or portion of an hour).

- Generate a table to demonstrate the possible charges for the first 4 hours of time.
- What would the charge be for a 10 hour job?

PRACTICE TIME!

