\qquad

U1:L2 Arithmetic series

On a separate graph paper, draw a square spiral following these steps:

1) Starting from the middle, draw a line segment 1 unit up.
2) From the end of that segment, draw a $2^{\text {nd }}$ line 1 unit longer than the previous segment towards the right.
3) Continue this pattern 13 times (always following a clockwise rotation).

Record the lengths of this segment as an arithmetic sequence:

- Term
- Length of segment
- Total length of spiral

| t_{1} | | | | | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | | | | | | | | \cdots |
| 1 | | | | | | | | | | | \cdots |

Can you derive formula to find the total length of the spiral at 20 segments?
$\star X_{n}=$ total of $n-1+t_{n}$
How about 1000 segments?

What are our strategies for finding this formula? What questions are we asking? What mistakes are we making?

$$
\begin{aligned}
& \text { An }_{n} \text { arithnethic sexes s.sum of termsthat tor an arithmetic sequence. } \\
& E X \text { : for the sequence } 2,4,6,8 \text {, the arithmetic series is } 2+4+6+8 \\
& \text { This arithmetic series is represented assn("SSutn ") or } \longrightarrow \\
& \text { symbol } \text { skilled SIGMA and it means literally Y (to sum mem } \\
& t_{1}+\left(t_{1}+d\right)+\left(t_{1}+2 d\right)+\left(t_{1}+3 d\right) \ldots \\
& S_{n}=(t)+\left(t_{1}+d\right)+\ldots \quad\left(t_{1}+(n-2) d\right)+\left(t_{1}+(n-1) d\right) \\
& \left.S_{n}=(t)-1\right)+\left(t_{1}+(n-2) d\right) \ldots\left(t_{1}+d\right)+\left(t_{1}\right) \\
& \frac{\partial S_{n}}{2}=\frac{\left(2 t_{1}+(n-1) d\right)+\left(2 t_{1}+(n-2) d\right) 000}{2} \\
& S_{n}=\frac{n}{2}\left(2 t_{1}+(n-1) d\right) \\
& S_{n}=\frac{n}{2}\left(2 t_{1}+(n-1) d\right) \\
& \text { icj can also be written as... } \\
& \sum^{n-1}=\frac{n}{2}(2 t,+(n-1) d)
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(t_{1}+t_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { EXAMPLE: } \\
& \text { * } S_{n}=\frac{n}{2}\left(2 t_{1}+(n-1) d\right)^{2}+3+3, \quad n=10 \\
& S_{n}=\frac{10}{2}(2(1)+(10-1) 3) \quad d=+3 \\
& S_{n}=5(2+9(3)) \rightarrow S_{x}=145 \\
& S_{n}=5 \text { (29) } \\
& \text { What is the sum of the first sixteen terms of the arithmetic sequence } \\
& S_{n}=\frac{1,5,9,13,2, ?}{2}\left(2 t_{1}+(n-1) d\right) \\
& n=16 \\
& S_{16-16}=\frac{16}{2}(2(1)+(16-1) 4) \\
& t_{1}=1 \\
& !=+4 \\
& \sum^{16-1}=8(2+(15) 4) \\
& S_{16}=496 \\
& \text { What is the sum of the first thirty terms of the arithmetic sequence } \\
& S_{n}=\frac{n}{2}\left(2 t_{1}+(n-1) d\right) \\
& n=30 \\
& t_{1}=50 \\
& S_{30}=\frac{30}{2}(2(50)+(30-1)-5) \\
& d=-5 \\
& S_{30}=15(100+(29)(-5)) \\
& 5_{30}=-675
\end{aligned}
$$

Male fireflies flash in various patterns to signal location or to ward off predators. Different species of fireflies have different flash characteristics, such as the intensity of the flash, the rate of the flash, and the shape of the flash. Suppose that under certain circumstances, a particular firefly flashes twice in the first minute, four times in the second minute, and six times in the third minute.
a) If this pattern continues, what is the number of flashes in the 30th minute?

$$
\begin{aligned}
& 2,4,6000 \\
& t_{n}=t_{1}+(n-1) d \\
& t_{30}=2+(30-1) 2 \\
& t_{30}=2+(29) 2 \\
& t_{30}=2+58 \\
& t_{30}=60
\end{aligned}
$$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}\left(2 t_{1}+(n-1) d\right) \\
& S_{30}=\frac{30}{2}(2(2)+(30-1) 2) \\
& S_{30}=15(4+29(2)) \\
& S_{30}=15(4+58) \\
& S_{30}=15(62) \\
& S_{30}=930
\end{aligned}
$$

