U1:L2 position, distance, Displacement

Draw a car in MOTION...

FRAME OF REFERENCE is the set of \qquad or \qquad
to which measurements and judgements can be made based on \qquad and
\qquad .

* One example of scientists using a frame of reference is in studying stars. The movement of stars is calculated based on the frame of reference created by other stars and the horizon.
* Sometimes when you do not have a frame of reference, you do not feel constant motion.

Examples: sleeping in a car, or flying in an airplane with the windows shut.

POINT OF ORIGIN is the \qquad point you take to be
your \qquad or 'zero'.

SCALAR quantities are solely the \qquad of the quantity, not the \qquad .
\qquad and \qquad .
\qquad and \qquad an object is located from an \qquad .

- Position refers to where the objects lies on a \qquad (x / y direction).
- MEASURED BY: scale or graph that we arbitrarily make.

DISTANCE is the measurement \qquad .

- Distance is a \qquad quantity - how much ground an object has covered.
- Distance measures the \qquad path of movement.
- MEASUREMENT TOOLS: rulers, tape measurers, measuring wheels, etc.

DISPLACEMENT is the overall \qquad in position.

- Displacement is a \qquad quantity which accounts for position AND direction (5 km North).
- Displacement is how far \qquad an object is.
- Displacement measures the \qquad path connecting the point of origin and \qquad
- When allocating a direction to displacement, we will often use: \qquad etc.

On a number line, we allocate an arbitrary direction which usually has the right as positive and left as negative, or up as positive and down as negative.

Many concepts in Mechanics and Kinematics speak about a change in something.
This change, in physics, is represented by the symbol ' \qquad '.

\vec{x}

Vectors are written with \qquad on top of their symbols to designate that it includes \qquad .

	SYMBOL	VECTOR / SCALAR	UNITS
POSITION			
DISTANCE			
DISPLACEMENT			

EXAMPLE: Let us say that Position 1 is 3 cm from our origin (0), and Position 2 is 10 cm from the origin. What equation can we build to figure out what displacement occurred between $P 1$ and P2?

SUBSCRIPTS -- \qquad , in kinematics, will often be seen with subscripts.

- Different from Chemistry, these subscripts are often \qquad rather than numbers.
- Often in physics we will use the subscript " \qquad " for final, and " \qquad " for initial.
- These subscripts are arbitrary though, and not all textbooks or professors / teachers will use the same symbols (subscripts are sometimes numbers to indicate first, second, etc.)

QUESTIONS:

- What is the point of origin? \qquad
- What is the distance travelled? \qquad
- What is the displacement? (Make sure to include direction)

TIME refers to a particular \qquad or \qquad .

IE:

- Jimmy started walking to school at 8:00 am.
- 5 minutes into the film, Ana decided she hated it and turned it off.

TIME INTERVAL refers to the \qquad of an event.

- An interval of time can also be considered the \qquad of time from the \qquad and \qquad time.

IE:

- The movie was 2.5 hours long.
- Ms. Burns drove at $250 \mathrm{~km} / \mathrm{h}$ for 10 minutes before noticing she was speeding.

	SYMBOL	SCALAR / VECTOR	UNIT
TIME			
TIME INTERVAL			

PRACTICE

a) What is the car's point of origin? \qquad
b) What is the car's distance travelled? \qquad
c) What is the car's displacement? \qquad

2: A bunny rabbit hops from -10 to -2 and then back to -10 .
a) What is the bunny's point of origin? \qquad -10
b) What is the bunny's distance travelled? \qquad
c) What is the bunny's displacement? \qquad

3: Two taxis are travelling along Portage Ave. in opposite directions.

b) What can we conclude about the speed of each taxi?

B is faster.
c) How do the positions of each taxi change if we decide to move the origin?

Af changes with change in d_{0}
d) How do the displacements of each taxi change with the change of origin?

does not change with do

CIRCULAR MOVEMENT AND ORBITS: How far does the Earth travel in one year? In terms of distance, quite far (the circumference of the Earth's orbit is nearly one trillion meters), but in terms of displacement, not far at all (zero, actually). At the end of a year's time the Earth is right back where it started from. It hasn't gone anywhere.

