\qquad
U1:LL Geometric series
A geometric series is the terms of a geometric sequence expressed as a sum.
To add geometric sequences we can use...
$\rightarrow t_{1}, t_{1} r, t_{1} r^{2} \circ 00 t_{1} r^{(n-1)}$
Each term is $\mathrm{t}_{1} \mathrm{r}^{\mathrm{k}}$, where k starts at 0 and goes up to $\mathrm{n}-1$
So...
Add and backwards version.

This is also seen as simply $S_{n} \ldots$

- s_{n} : the series (Lu mb $F^{\prime \prime} n^{\prime \prime}$ terms)
- t_{1} is the first term of the series
- r is the common ratio
- n is the number of terms
- $r \neq 1\}$ means that this dofsn4 work when the common ratio is 1.

Find the sum of the first 4 terms of

$$
\begin{aligned}
& t_{1}=10 \\
& r=+3 \\
& n=4
\end{aligned}
$$

$$
S_{n}=\frac{t_{1}\left(r^{n}-1\right)}{r-1}
$$

verify

$$
S_{n}=\frac{10\left(3^{4}-1\right)}{3-1}
$$

$$
400=10+30+90+270
$$

$$
400=400 \mathrm{~V}
$$

$S_{n}=\frac{10(80)}{2}$
$S_{n=400}$

$$
\begin{aligned}
& n=10 \\
& \text { (1120) } 1 / 4,1 / 18,1 / 16, \ldots \text {) } \\
& t_{1}=\frac{1}{2} \quad S_{n}=\frac{t_{1}\left(r^{n}-1\right)}{r-1} \\
& r=\frac{1}{2} \quad S_{n}=\frac{\frac{1}{2}\left(\frac{r-1}{\left.1 \frac{1}{2}\right)^{10}}-1\right)}{\frac{1}{2}-1} \\
& S_{n}=\frac{\left.\frac{1}{2}\binom{\frac{1}{20}-1}{2^{10}}-1\right)}{-\frac{1}{2}} \\
& S_{n}=\frac{\frac{1}{2}\left(\frac{1^{-\frac{1}{2}}}{1024}-\frac{1024}{1024}\right)}{\theta \frac{1}{2}}=-\left(\frac{-1023}{1024}\right)=-1+\underset{0.999 \ldots}{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, swat happens when ais unknown? } \\
& t_{1}=\frac{1}{27} \\
& n=\text { ? } \\
& r=3 \\
& t_{n}=729 \\
& \begin{array}{l}
t_{n}=t_{1} r^{n-1} \\
2 m 29=\frac{1}{27}(3)^{n-1}
\end{array} \\
& \left\{\frac{1}{27}, \frac{1}{9}, \frac{1}{3}, \ldots, 729\right\}
\end{aligned}
$$

$196831=(3)^{n-1}$ E Exponent Laws
(3)

$$
\begin{aligned}
& (3)^{6}=(3)^{n-1} \\
& 3^{9}=3^{n-1} \\
& 10=n \\
&
\end{aligned} \quad \rightarrow \begin{aligned}
& S_{n}=\frac{t_{1}\left(r^{n}-1\right)}{\delta_{n}=\frac{1}{27}\left(3^{-1}-1\right)} \frac{10-1}{10}=\frac{\frac{1}{21}(59048)}{9} \\
& S_{n}=242.996
\end{aligned}
$$

An advertising company designs a campaign to introduce a new product to a
metropolitan area. The company determines that 1000 people are aware of the metropolitan area. The company determines that 1000 people are aware of the
product at the beginning of the campaign. The number of new people aware increases by 40% every 10 days during the campaign. How many people will be

$$
\begin{aligned}
& \text { aware of the campaign after } 100 \text { days? } \\
& 1000,1400,1960 \\
& t_{1}=1000 \\
& r=1.4 \\
& n=10 \\
& S_{10}=\frac{t_{1}\left(r^{n}-1\right)}{r-1}=\frac{1000\left(1.4^{10}-1\right)}{1.4-1}=\frac{1000(27.93)}{0.4} \\
& S_{10}=\frac{27930}{0.4}=69825
\end{aligned}
$$

