U1:L4 Velocity

| SPEED |  |
| :---: | :---: |
| The rate that <br> you cover a <br> distance | VELOCITY |
| The rate that <br> you change <br> position <br> (displacement) |  |
| $V=\frac{\Delta d}{\Delta t}$ |  |$\quad$| VECTOR |
| :--- |

average speed $\qquad$
$\qquad$
$\qquad$ instantaneus Speed t.me smane instintoman velacacty trime sins instrontus velocry For example,
EXAMPLES:

$$
\begin{aligned}
& V=\frac{\Delta d}{\Delta t} \quad V=80 \mathrm{~m} / \mathrm{s} \\
& r=\frac{450 m}{50 \mathrm{~s}}=\frac{400-0}{50-0}
\end{aligned}
$$

Velocity on Position-Time Graphs
change of position in an
interval of time

$$
\vec{v}=\frac{\Delta d}{\Delta t}
$$

SLOPE
the measure of STEEPNESS of a line

$$
m=\frac{\text { rise }}{r_{\text {un }}}=\frac{\Delta y}{\Delta x}
$$



$$
\begin{aligned}
& m=\frac{\Delta y}{\Delta x}=\frac{3-(-1)}{4-(-2)}=\left(\frac{4}{6}(x, y)\right. \\
& V=(-2,-1) \\
& (4,3) \\
& \frac{4 m}{\Delta t}=\frac{d_{f}-d_{0}}{t_{f}-t_{0}}=\frac{m}{\mathrm{~s}} \\
& \frac{4}{6}=0.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$



Determining the SLOPE of the line, on a position-time graph, determines the velocity of the object.

> AVERAGE VELOCITY SLOPE $=\begin{gathered}\text { total Displacement over } \\ \text { an }\end{gathered}$ NTERVAL of time.

Therefore, average velocity can be found by determining the slope between two points on a Position-Time graph.

## SLope of line $=$ average speed


aa instantaneous velocity

Therefore, instantaneous velocity must be found through a specific instant on the graph. This is done by finding the slope of a tangent line.


Position vs Time


What is the average speed fore object between point $A$ and $C$ (graph above)?

$$
V=\frac{\Delta d}{\Delta t}=\frac{10}{4}=2.5 \mathrm{~m} / \mathrm{s}
$$

What is the averageseed the object between point F and H (graph above)?


## Acceleration

Acceleration is a $\qquad$ quantity that is defined as...
*An object is only accelerating if it is changing its velocity.

| Time | Velocity |
| :---: | :---: |
| 0 s | $0 \mathrm{~m} / \mathrm{s}, \mathrm{No}_{\mathrm{o}}$ |
| 1 s | $10 \mathrm{~m} / \mathrm{s}, \mathrm{No}_{\mathrm{o}}$ |
| 2 s | $20 \mathrm{~m} / \mathrm{s}, \mathrm{No}_{\mathrm{o}}$ |
| 3 s | $30 \mathrm{~m} / \mathrm{s}, \mathrm{No}_{\mathrm{o}}$ |
| 4 s | $\mathbf{4 0 m / s}, \mathrm{No}_{\mathrm{o}}$ |
| 5 s | $50 \mathrm{~m} / \mathrm{s}, \mathrm{No}_{\mathrm{o}}$ |


$\qquad$ is when an object accelerates at the same rate each second.
*An object with a constant acceleration should not be confused with an object with a constant velocity.
*Don't be fooled! If an object is changing its $\qquad$ -whether by a constant amount or a varying amount - then it is an $\qquad$ object.
*And an object with a $\qquad$ is $\qquad$ accelerating.

AcceleratingObjects are Changing Their Velocity ...
... by a constant amount each second..

| Time <br> $(\mathrm{s})$ | Velocity <br> $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 4 |
| 2 | 8 |
| 3 | 12 |
| 4 | 16 |

...in which case, it is referred to as a constant acceleration.
... or by a changing amount each second ...

| Time <br> $(\mathrm{s})$ | Velocity <br> $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 1 |
| 2 | 4 |
| 3 | 5 |
| 4 | 7 |

...in which case, it is referred to as a non-constant acceleration.

Finding an equation for acceleration:

Can you find the acceleration of a falling object from the following information?

| Time <br> Interval | Velocity Change <br> During Interval | Ave. Velocity <br> During Interval | Total Distance <br> Distance Traveled <br> During Interval | Traveled from <br> Os to End of <br> Interval |
| :---: | :---: | :---: | :---: | :---: |
| $0-1.0 \mathrm{~s}$ | 0 to $\sim 10 \mathrm{~m} / \mathrm{s}$ | $\sim 5 \mathrm{~m} / \mathrm{s}$ | $\sim 5 \mathrm{~m}$ | $\sim 5 \mathrm{~m}$ |
| $1.0-2.0 \mathrm{~s}$ | $\sim 10$ to $20 \mathrm{~m} / \mathrm{s}$ | $\sim 15 \mathrm{~m} / \mathrm{s}$ | $\sim 15 \mathrm{~m}$ | $\sim 20 \mathrm{~m}$ |
| $2.0-3.0 \mathrm{~s}$ | $\sim 20$ to $30 \mathrm{~m} / \mathrm{s}$ | $\sim 25 \mathrm{~m} / \mathrm{s}$ | $\sim 25 \mathrm{~m}$ | $\sim 45 \mathrm{~m}$ |
| $3.0-4.0 \mathrm{~s}$ | $\sim 30$ to $40 \mathrm{~m} / \mathrm{s}$ | $\sim 35 \mathrm{~m} / \mathrm{s}$ | $\sim 35 \mathrm{~m}$ | $\sim 80 \mathrm{~m}$ |

Units for acceleration are a bit bizarre - but we can find the units to use based on our equation for acceleration...

Since acceleration is a vector quantity, it has a $\qquad$ associated with it. The direction of the acceleration vector depends on two things:

- whether the object is $\qquad$ or $\qquad$
- whether the object is moving in the $\qquad$ or $\qquad$ direction

The general principle for determining the acceleration is:

If an object is $\qquad$ , then its acceleration is in the $\qquad$ direction of its motion.

Calculate the acceleration of the following situations:
Example A
Example B

| Time <br> $(\mathrm{s})$ | Velocity <br> $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: |
| 0 | 0 |
| 1 | 2 |
| 2 | 4 |
| 3 | 6 |
| 4 | 8 |


| Time <br> $(\mathrm{s})$ | Velocity <br> $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: |
| 0 | -8 |
| 1 | -6 |
| 2 | -4 |
| 3 | -2 |
| 4 | 0 |

These are both examples of positive acceleration.

Example C

| Time <br> $(\mathrm{s})$ | Velocity <br> $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: |
| 0 | 8 |
| 1 | 6 |
| 2 | 4 |
| 3 | 2 |
| 4 | 0 |

Example D

| Time <br> (s) | Velocity <br> $(\mathrm{m} / \mathrm{s})$ |
| :---: | :---: |
| 0 | 0 |
| 1 | -2 |
| 2 | -4 |
| 3 | -6 |
| 4 | -8 |

These are both examples of negative acceleration.

Explain the following situations:


## Acceleration

= change in velocity


