U1:L5 Infinite Geometric series
$\stackrel{\text { Consider: }}{\bullet 2} \underset{\sim 0.5}{\underset{4,2,1,0.5,0.25}{ } \ldots}$

As the number of terms increases, the sum gets closer and closer to \square 8 .
This is said to be convergent series.
Consider:

As the number of terms increases, the sum continues to grow This series does not approach a Fixed SWM. Therefore, the sum of this series cannot be calculated.
it is a divergent series.
The formula for an Infinite Geometric Series ...

$$
\begin{aligned}
& t_{1}=1 \\
& r=\div 3=x\left[-\frac{1}{3}\right] \\
& -1<r<1 \\
& \text { then }=\text { convergent }
\end{aligned} \quad \begin{aligned}
& S_{\infty}=\frac{t_{1}}{1-r} \\
& S_{\infty}=\frac{1}{1-\left(-\frac{1}{3}\right)} \\
& S_{\infty}=\frac{1}{1 \frac{1}{3}}=\frac{1}{3} \\
& S_{\infty}=1 \div \frac{4}{3} \\
& S_{\infty}=\frac{1}{3} \times \frac{4}{3}=\frac{1}{4} \cdot \frac{4}{3} \cdot \frac{4}{3} \\
& S_{\infty}=\frac{3}{4}
\end{aligned}
$$

$t_{1}=2^{b) 2,-4,8 . .}$

$$
\begin{array}{ll}
t_{1}=2 & r<-1 \\
r=-2 &
\end{array}
$$

divergent \therefore cannot find sum.

