U2:L1 Angles in Standard position

Cartesian Planes

we cerate andes on Cartesian Planes
The initial arm is always along the and is our starting position.
The angel is made at te point of origin $(0,0)$
minn mem

For each angle in standard position, we also have areference angle Reference angles $\hat{\theta}_{-2}$) are:

Example: Find the angles which all have a reference angle of 15°.

Sketch each angle in standard position. What quadrant are the terminal arms in? What are their reference angles?

Determine the angle in standard position of an angle of 40 when it is:

Reflected over the y axis	Reflected over the x axis	Reflected over the. y and then xaxis.
140°		

Draw an angle in each quadrant that is not in standard position:

special Right triangles
For the ares $30,45^{\circ}, 60^{\circ}$

The same can be done with a special 30 triangle, and special 60 triangle.

Ex: A metronome (with an arm of 10 cm) swings from 60° to 120°. What horizontal distance does

$$
h_{\frac{1}{x}}^{10}
$$

$$
\cos =\frac{a}{H}
$$

$$
\begin{gathered}
\cos 60^{\circ}=\frac{x}{x^{10}}
\end{gathered}
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=1^{2}+\sqrt{3}^{2} \\
& c^{2}=1+3 \\
& \sqrt{c^{2}}=\sqrt{4} \\
& c=2 b^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Using Pythagoras Theorem } \\
\text { a side length of } 1 \text { unit. }
\end{array} \\
& \begin{array}{l}
\text { and }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll|l}
C^{2}=a^{2}+b^{2} & \sin & \frac{0}{H} \\
C^{2}=1^{2}+1^{2} & \frac{1}{\sqrt{2}} \\
C^{2}=1+1 & \cos & \frac{A}{H} \\
\sqrt{C^{2}}=1 & \frac{1}{\sqrt{2}} \\
\begin{array}{cl}
C & =\sqrt{2}
\end{array} & \tan & \frac{0}{A} \\
C & \frac{1}{1}=1
\end{array} \\
& \begin{array}{ll|l}
C^{2}=a^{2}+b^{2} & \sin & \frac{0}{H} \\
C^{2}=1^{2}+1^{2} & \frac{1}{\sqrt{2}} \\
C^{2}=1+1 & \cos & \frac{A}{H} \\
\sqrt{C^{2}}=1 & \frac{1}{\sqrt{2}} \\
C & & \tan \\
C & \frac{0}{A} & \frac{1}{1}=1
\end{array}
\end{aligned}
$$

