U2:L2 Trig RatiOS
On the following plane, draw a terminal arm that connects to point $(3,4)$.
Create a triangle with the x -axis.
Solve for:
SIN $\sin \theta=\frac{0}{H}=\frac{+4}{5}=0.8$
COS $\cos \theta=\frac{A}{5}=\frac{+5}{5}=0.6$
TAN $\tan \theta=\frac{5}{H}=\frac{4}{3}=1.3$

Rotate the triangle into the other three quadrants and complete the following table:

	OI	alI	aIt
SIN	$\frac{4}{5}=0.8$	$\frac{-4}{5}=-0.8$	$\frac{-1}{5}=-0.8$
COS	$\frac{-3}{5}=-0.6$	$\frac{-3}{5}=-0.6 \frac{3}{5}=0.6$	
TAN	$\frac{4}{-3}=-1 . \overline{3}$	$\frac{-4}{-3}=1 . \overline{3}$	$-\frac{4}{5}=-1.3$

From this table we can see the following patterns:

Quadrant info:

Examples:

- Draw the angle and triangle in standard position
- Write out the trig ratio
- Solve

What is the exact value of $\cos 135^{\circ}$?

An angle has a terminal arm in QIII. $\cos \theta=-\frac{3}{4}$. Find \sin an

$$
\begin{gathered}
(-x,-y) \quad \frac{b^{2}}{b-\sqrt{7}} \\
\frac{Q \text { Quadrantal }}{\text { What angles. }}
\end{gathered}
$$

$-4 \quad \forall$

$$
\begin{aligned}
& c^{2}=1^{2}+1^{2} \\
& c^{2}=2 \\
& c=\sqrt{2}
\end{aligned}
$$

$\cos \theta=-0.707$
$180^{\circ}-135^{\circ}=45^{\circ}$

$\cos \theta=\frac{-1}{\sqrt{2}}$

What angles are these?
$0,90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$
Fill in the following table:

STEP 3 SKetch + solve
Solve for the angle...
a) $\sin \theta=0.5 ; 0^{\circ}<\theta<360^{\circ}$ Q or QI I

b) $\cos \theta=-0.6753 ; 0^{\circ}<\theta<360^{\circ}$

$\mathbb{I I}_{S} X X$	
X^{T}	$C^{I V}$

QII or QII.

$$
45-45-90
$$

$$
\theta=45^{\circ}
$$

PRACTICE: Pages 96-99 (Q 3, 4, 5, 6, 8, 11,18, 25)

