U2:L3-speciall Cases

Any base to the power of 1 , is the base.

5^{1}	5
49^{1}	49
12345^{1}	12,345
0.99^{1}	0.99

Any base to the power of 0 i. 1.

5^{0}	1
49^{0}	1
$(-100)^{0}$	1
0.13^{0}	1

A negative base with an ven exponent is positive.

$$
\begin{aligned}
& (-2)^{2}=(-2) \times(-2)=+4 \\
& (-3)^{2}=(-3) \times(-3)=+9 \\
& (-2)^{4}=(-2) \times(-2) \times(-2) \times(-2)= \\
& \begin{array}{rr}
\left.(-3) \times(-3) \times(-3) \times\left(\frac{(}{3} 3\right)\right)^{4} & (+4) \times(-2) \times(-2) \\
(9) \times(-3) \times(-3) & (-8) \times(-2)
\end{array} \\
& (9) \times(-3) \times(-3) \quad(-8) \times(-2) \\
& (-247 \text { getive ese ming no odd e e enonndis negative. }+16 \\
& \begin{array}{|c|l|}
\hline(-2)^{3} & -8 \\
\hline(-3)^{3} & -27 \\
\hline(-2) \times(-2) \times(-2) \times(-2) \times((-2))^{5} & -32 \\
\hline(-3)^{5} & -243 \\
\hline
\end{array} \\
& (-3) \times(-3) \times(-3) \times(-3) \times(-3) \\
& 9 \times(-3) \times(-3) \times(-3) \\
& (-27) \times(-3) \times(-3)
\end{aligned}
$$

Fractions with exponents require the exponent to be applied to both the numerator and denominator.

$$
\begin{aligned}
& \left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}=\frac{2 \times 2 \times 2}{3 \times 3 \times 3} \\
& \left(\frac{3}{5}\right)^{2}=\frac{3^{2}}{5^{2}}=\frac{3 \times 3}{5 \times 5}=\frac{9}{25} \\
& \left(\frac{5}{9}\right)^{2}=\frac{5^{2}}{9^{2}}=\frac{5 \times 5}{9 \times 9}=\frac{25}{81} \\
& \left(\frac{11}{13}\right)^{2}=\frac{11^{2}}{13^{2}}=\frac{11 \times 11}{13 \times 13}=\frac{121}{169}
\end{aligned}
$$

Variables (letters) can also be used with exponents. Fill in the table below:

Negative Bases

