

Classify (name) the following polynomials by number of terms:

1. $3 x-5$
2. $6 x^{3}-5 x+2$
binomial
TRinomial
3. $4 x^{4}-3 x^{7}+4 x^{2}+x-2$
4. $2 x^{3}$
5. $5 x^{5}-13 x+271$
6. $144 x^{4}-9$

We also classify polynomials by

The largest exponent of a polynomial determines the degree of the polynomial.

Largest Exponent	Name	Example
0	Constant	$12 x^{0}=12$
1	linear	$3 x=3 x^{\prime}$
2	quadratic	$4 b^{2}$
3	cubic	$9 y^{3}+y^{2}$
4	quartic	$10 a^{4}+5$
5	quintic	$2 f^{5}+p^{3}+f$

Classify (name) the following polynomials by degree.
7. $3 x-5$
8. $6 x^{3}-5 x+2$
linear
10. $2 x^{3}$
11. $5 x-13 x+271$
12. $144 x^{4}-9$
13. 51

CUBIC
quadratic
quartic
Constant
Fill in the following table:

The order of a polynomial is important.
We organize a polynomial in that the terms are placed in that the terms are placed in descending order from largest degree to smallest \qquad degree.
\qquad standard form

Circle the following polynomials that are ordered in standard form. Rewrite the others in standard form:

Just because a polynomial is NOT written in standard form, does not mean it is not a polynomial.
This means there are polynomials which are EQUIVAlenT
the same value) as each other but written in different orders.

Create an equivalent polynomial for each of the following:

