U3:L2 Quadratics in standard Form

$$
f(x)=a x^{2}+b x+c
$$

Where a,, , care real unbesers and $a \neq 0$.
A-shape of the parabola
A-open UP/ DOWN
$\mathrm{B}^{\text {-position of parabola }}$ on graph
$C^{-y \text { intercept of graph }}$

Thank b^{n} $\underbrace{\text { think }} y=m x+b$

Factoring
The two forms are related to each other... Per feet square
$f(x)=a(x-p)^{2}+q \quad$ binomial
$f(x)=a\left(x^{2}-2 x p+p^{2}\right)+q$
$f(x)=a x^{2}-2 a x p+a p^{2}+q$
$f(x)=a x^{2}-(2 a p) x+\left(a p^{2}+q\right)$
$f(x)=a x^{2}+(-2 a p) x+\left(a p^{2}+q\right)$
$f=-2 a p=a x^{2}+b x+c$

$\therefore=a p^{2}+q$
$a=c-a p^{2}$

To find the x-coordinate of the vertex, use $x=0$

$$
f(x)=-x^{2}+2 x+8
$$

*DESMOS APP
velocity of $6.8 \mathrm{~m} / \mathrm{s}$. Her
$-p^{*}$

$$
\begin{aligned}
& y=3=c \begin{array}{c}
\text { Wheres she starts } \\
\text { on Sperater }
\end{array} \\
& \text { y } \\
& (0.694,5.359) 5.4 \mathrm{~m}^{\text {Vertex }} \\
& (1.74,0)^{x} \text { intercept }
\end{aligned}
$$

(1..7, 0) 1.74 seconds
$(0.6,5.316) \quad 5.316 \mathrm{~m}$

Joe Bob is making an ice rink in his yard. He has 100 m of boards to use as perimeter.
a) Write a quadratic function in standard form to represent th
rink: $P=2 l+2 w$

$$
\begin{aligned}
A-l w-w-100 & =2 l+2 w \\
\frac{100-2 w}{2} & =\frac{2 l}{2} \\
50-w & =l
\end{aligned}
$$

$$
\begin{array}{cc}
x=P & y=a x^{2}+b x+c \\
A x^{2}=\frac{-b}{9 a} & \begin{array}{c}
\text { What are the coordinates of the rte } \\
\\
y=-w^{2}+50 w+0 \\
x=\frac{-50}{2(-1)} \\
y=-1 x^{2}+50 x+0 \\
x=25
\end{array} \\
&
\end{array}
$$

$$
\left\{\begin{array}{l}
y=-1(25)^{2}+50(25)+0 \\
y=-625+1250 \\
y=625 \\
(25,625)
\end{array}\right.
$$

d) Dormie

Determine the domain and range.
$\{y \mid y \leq 625, y \in \mathbb{R}\}$
Edo not work.
e) Identify any assumptions you made to solve this.

* He uses ALL the fencing
* He has unlimited perfect space for a perfect rectangle rink.
practice: Pages 174 - 179 as: 1, 3, 4, 6

