U3:L5 Factoring quadratic Equations

$$
\begin{aligned}
& 20\left(x^{2}+2 x+3\right)
\end{aligned}
$$

$$
\begin{aligned}
& (2 x+3)(x-2) \\
& a^{2}+2 a b+b^{2} \\
& (a+b)^{2} \\
& a^{2}-2 a b+b^{2} \\
& (a-b)^{2} \\
& a^{2}-b^{2} \\
& (a+b)(a-b)
\end{aligned}
$$

$$
\begin{aligned}
& (2 x+3)^{2} \\
& a^{2}-2 a b+b^{2} \quad \sqrt{\sqrt{x^{2}}-2 x+\sqrt{6 x}} \quad \begin{array}{l}
2 a b \\
2(3 x) \\
2(4)
\end{array} \\
& (a-b)^{2} \quad \begin{array}{ll}
a=3 x & b x(4) \\
(3 x-4)^{2} & -24 x
\end{array} \\
& a^{2}-b^{2} \frac{(3 x-4)^{2}}{\sqrt{\frac{4}{x^{x}} x^{\sqrt{6 a^{2}}}}} \\
& (a+b)(a-b) \quad a=\frac{2}{3} x \quad 4 y=b \\
& \left(\frac{2}{3} x+4 y\right)\left(\frac{2}{3} x-4 y\right)
\end{aligned}
$$

Factoring the Difference of Squares

$$
\begin{aligned}
& \text { You can factor a "difference of squares" polynomial as: } \\
& P^{2}-Q^{2}=(P-Q)(P+Q) \\
& \text { When } P \text { and } Q \text { are any expression. For example: } \\
& a^{2}-b^{2} \\
& (a+b)(a-b) \\
& \text { EXAMPLE: } \\
& \sqrt{9 x^{2}} \sqrt{0.64 y^{2}} \\
& a=3 x \quad b=0.8 y \\
& (3 x+0.8 y)(3 x-0.8 y) \\
& \begin{array}{lc}
\frac{a^{2}}{\sqrt{(x-2)}} \frac{b^{2}}{\sqrt{(025 y-4)^{2}}} & a^{2}-b^{2} \\
=2(x-2) \quad b=0.5(y-4) & (a+b)(a-b)
\end{array} \\
& \begin{array}{l}
(2(x-2)+0.5(y-4))(2(x-2)-0.5(y-4)) \\
(2 x-4+0.5 y-2)(2 x-4)-0.5 y+2)
\end{array} \\
& \frac{(2 x-4+05 y-2)(2 x-4-05 y}{(2 x+05 y-6)(2 x-0.5 y-2)}
\end{aligned}
$$

zeroes - x-intercept
Determining Roots with Factoring Quadratics
$3 \cdot 3$

$$
\begin{aligned}
& \text { (3.3) } \begin{array}{c}
x^{2}+3 x+3 x+9=0 \\
x(x+3)+3(x+3)=0 \quad \text { Root } \\
(x+3)(x+3)=0 \\
\sqrt{(x+3)^{2}=0} \\
x+3=0 \\
x-3 \\
x=-3 \\
x-10 \\
2 x^{2}-9 x-5=0 \\
2 x^{2}+x-10 x-5=0 \\
x(2 x+1)-5(2 x+1)=0 \\
(x-5)(2 x+1)=0 \\
x-5=0 \quad 2 x+1=0 \\
x=5) \leftarrow \text { Two Roots } \rightarrow x=x=-1 / 2
\end{array}
\end{aligned}
$$

$$
(x)-102
$$

