NAME:
U3:L6 Solving quadratics by completing the square
Remember how to complete the sure? \longrightarrow Perfect Square Trauma

$$
\begin{aligned}
y-80 & \begin{aligned}
f(x) & =10 x^{2}-160 x \\
=10 x^{2}-160 x & a^{2}+2 a b+b^{2} \\
y-80 & =10\left(x^{2}-16 x+64\right) \quad(b=8 \\
y-80+640 & =10(x-8)^{2}
\end{aligned} \quad(a-b)^{2} \\
y+560 & =10(x-8)^{2}
\end{aligned}
$$

$\overbrace{\text { POTS }}^{x-\text { intercepts }}$
ROOTS
ZEROES
H
You can also solve the quadratic by completing the square, isolating the squared term and taking the square root of both sides.
Remember, the square root of a positive number can be positive or negative..
(8)

Prove

$$
\sqrt{25}= \pm 5 \quad \sqrt{-25}=E R R
$$

$y=0 \rightarrow 2 E R O E S / R O O T S$

$$
\begin{aligned}
& x-1=7 \\
& x=8 \\
& x(8,0)
\end{aligned}
$$

$$
\frac{x-1=-7}{x=-6}(-6,0)
$$

8

$$
\begin{aligned}
y & =(x-1)^{2}-49 \\
0 & =(8-1)^{2}-49 \\
0 & =(7)^{2}-49 \\
0 & =49-49 \\
0 & =0
\end{aligned}
$$

(-6)

$$
\begin{aligned}
& \text { into the original equation: } \\
& y=(x-1)^{2}-49 \\
& 0=(-6-1)^{2}-49 \\
& 0=(-7)^{2}-49 \\
& 0=49-49 \\
& 0=0
\end{aligned}
$$

Extraneous Roots
An extraneous root is a root solution which is not allowed because of restrictions of the situation. For example..
ATV has a diagonal measure of 42 inches. The width of the screen in 166 inches more than the eighty Determine the dimensions of the screen, to the e tent of of

$$
a^{2}+b^{2}=c^{2}
$$

$$
\begin{aligned}
& a^{2}+2 a b+b^{2} \\
& \begin{array}{l}
2 a b=16 h \\
2 a b
\end{array} \quad 2 h^{2}+32 h=1508 \\
& \left.\begin{array}{l}
2 a b=16 h \\
2 a h=\frac{16 h}{2 h} \quad 2\left(h^{2}+16 h+64\right.
\end{array}\right)=1508+128 \\
& \begin{array}{l}
\quad b=8{ }^{2 h} \\
(a+b)^{2}
\end{array} \\
& \frac{\frac{2(h+8)^{2}}{2(h+8)^{2}-1636=0}}{2(h+8=+286} \quad \frac{2(h+8)^{2}}{\frac{2}{2}}=\frac{1636}{2} \\
& h=20.6 \\
& h+8= \pm 28.6 \\
& h+8=-286
\end{aligned}
$$

EXTRANEOUS $\rightarrow-36.6$
PRACTICE: Page 240, Q 1 (abc), 3(ab), 4(ab), 6(cd), 7(bc)

